Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Food ; 5(4): 312-322, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605128

RESUMEN

Farming externalities are believed to co-vary negatively, yet trade-offs have rarely been quantified systematically. Here we present data from UK and Brazilian pig production systems representative of most commercial systems across the world ranging from 'intensive' indoor systems through to extensive free range, Organic and woodland systems to explore co-variation among four major externality costs. We found that no specific farming type was consistently associated with good performance across all domains. Generally, systems with low land use have low greenhouse gas emissions but high antimicrobial use and poor animal welfare, and vice versa. Some individual systems performed well in all domains but were not exclusive to any particular type of farming system. Our findings suggest that trade-offs may be avoidable if mitigation focuses on lowering impacts within system types rather than simply changing types of farming.


Asunto(s)
Crianza de Animales Domésticos , Animales , Porcinos , Crianza de Animales Domésticos/métodos , Brasil , Reino Unido , Bienestar del Animal , Gases de Efecto Invernadero , Agricultura/economía
2.
Proc Biol Sci ; 290(1995): 20230120, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36946112

RESUMEN

Animal welfare is usually excluded from life cycle assessments (LCAs) of farming systems because of limited consensus on how to measure it. Here, we constructed several LCA-compatible animal-welfare metrics and applied them to data we collected from 74 diverse breed-to-finish systems responsible for 5% of UK pig production. Some aspects of metric construction will always be subjective, such as how different aspects of welfare are aggregated, and what determines poor versus good welfare. We tested the sensitivity of individual farm rankings, and rankings of those same farms grouped by label type (memberships of quality-assurance schemes or product labelling), to a broad range of approaches to metric construction. We found farms with the same label types clustered together in rankings regardless of metric choice, and there was broad agreement across metrics on the rankings of individual farms. We found woodland and Organic systems typically perform better than those with no labelling and Red tractor labelling, and that outdoor-bred and outdoor-finished systems perform better than indoor-bred and slatted-finished systems, respectively. We conclude that if our goal is to identify relatively better and worse farming systems for animal welfare, exactly how LCA welfare metrics are constructed may be less important than commonly perceived.


Asunto(s)
Crianza de Animales Domésticos , Animales Domésticos , Animales , Porcinos , Granjas , Bienestar del Animal
3.
Sci Rep ; 13(1): 2840, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36804956

RESUMEN

Pork accounts for the largest proportion of meat consumed globally and demand is growing rapidly. Two important externalities of pig farming are land use and antimicrobial resistance (AMR) driven by antimicrobial use (AMU). Land use and AMU are commonly perceived to be negatively related across different production systems, so those with smaller land footprints pose greater risk to human health. However, the relationship between land use and AMU has never been systematically evaluated. We addressed this by measuring both outcomes for 74 highly diverse pig production systems. We found weak evidence of an AMU/land use tradeoff. We also found several systems characterized by low externality costs in both domains. These potentially promising systems were spread across different label and husbandry types and indeed no type was a reliable indicator of low-cost systems in both externalities. Our findings highlight the importance of using empirical evidence in decision-making, rather than relying on assumptions.


Asunto(s)
Antiinfecciosos , Enfermedades de los Porcinos , Porcinos , Humanos , Animales , Crianza de Animales Domésticos , Granjas , Carne
4.
R Soc Open Sci ; 9(6): 211573, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35754996

RESUMEN

It has been argued that intensive livestock farming increases the risk of pandemics of zoonotic origin because of long-distance livestock movements, high livestock densities, poor animal health and welfare, low disease resistance and low genetic diversity. However, data on many of these factors are limited, and analyses to date typically ignore how land use affects emerging infectious disease (EID) risks, and how these risks might vary across systems with different yields (production per unit area). Extensive, lower yielding practices typically involve larger livestock populations, poorer biosecurity, more workers and more area under farming, resulting in different, but not necessarily lower, EID risks than higher yielding systems producing the same amount of food. To move this discussion forward, we review the evidence for each of the factors that potentially link livestock production practices to EID risk. We explore how each factor might vary with yield and consider how overall risks might differ across a mix of production systems chosen to reflect in broad terms the current livestock sector at a global level and in hypothetical low- and high-yield systems matched by overall level of production. We identify significant knowledge gaps for all potential risk factors and argue these shortfalls in understanding mean we cannot currently determine whether lower or higher yielding systems would better limit the risk of future pandemics.

5.
Biol Rev Camb Philos Soc ; 96(6): 2694-2715, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34231315

RESUMEN

The crisis generated by the emergence and pandemic spread of COVID-19 has thrown into the global spotlight the dangers associated with novel diseases, as well as the key role of animals, especially wild animals, as potential sources of pathogens to humans. There is a widespread demand for a new relationship with wild and domestic animals, including suggested bans on hunting, wildlife trade, wet markets or consumption of wild animals. However, such policies risk ignoring essential elements of the problem as well as alienating and increasing hardship for local communities across the world, and might be unachievable at scale. There is thus a need for a more complex package of policy and practical responses. We undertook a solution scan to identify and collate 161 possible options for reducing the risks of further epidemic disease transmission from animals to humans, including potential further SARS-CoV-2 transmission (original or variants). We include all categories of animals in our responses (i.e. wildlife, captive, unmanaged/feral and domestic livestock and pets) and focus on pathogens (especially viruses) that, once transmitted from animals to humans, could acquire epidemic potential through high rates of human-to-human transmission. This excludes measures to prevent well-known zoonotic diseases, such as rabies, that cannot readily transmit between humans. We focused solutions on societal measures, excluding the development of vaccines and other preventive therapeutic medicine and veterinary medicine options that are discussed elsewhere. We derived our solutions through reading the scientific literature, NGO position papers, and industry guidelines, collating our own experiences, and consulting experts in different fields. Herein, we review the major zoonotic transmission pathways and present an extensive list of options. The potential solutions are organised according to the key stages of the trade chain and encompass solutions that can be applied at the local, regional and international scales. This is a set of options targeted at practitioners and policy makers to encourage careful examination of possible courses of action, validating their impact and documenting outcomes.


Asunto(s)
COVID-19 , Animales , Animales Salvajes , Humanos , Pandemias , SARS-CoV-2 , Zoonosis/epidemiología
6.
Nat Sustain ; 1(9): 477-485, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30450426

RESUMEN

How we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high levels of externalities such as greenhouse gas (GHG) emissions and nutrient losses. However, such metrics underestimate the overall impacts of lower-yield systems, so here we develop a framework that instead compares externality and land costs per unit production. Applying this to diverse datasets describing the externalities of four major farm sectors reveals that, rather than involving trade-offs, the externality and land costs of alternative production systems can co-vary positively: per unit production, land-efficient systems often produce lower externalities. For GHG emissions these associations become more strongly positive once forgone sequestration is included. Our conclusions are limited: remarkably few studies report externalities alongside yields; many important externalities and farming systems are inadequately measured; and realising the environmental benefits of high-yield systems typically requires additional measures to limit farmland expansion. Yet our results nevertheless suggest that trade-offs among key cost metrics are not as ubiquitous as sometimes perceived.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...